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PEP8

Python Enhancement Proposals

PEP 8 - Style Guide for Python code
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PEP8

A concern of the tutors from the computer science department for the benefit of all involved.
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Exibit A

1 # Bad code we want to improve:

2 x=1

3 y=[21,42]

4 def fn(x,y):

5 x=x*2

6 if x==y:

7 print("This is correct")

8 return True

9 else:

10 print("This is false")

11 return False

12 z="data/"

13 x=fn(x,y)

14 print(x)
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Blank lines

1 x = 1

2 y = [21, 42]

3

4

5 def fn(x, y):

6 x = x * 2

7 if x == y:

8 print("This is correct")

9 return True

10 else:

11 print("This is false")

12 return False

13

14

15 z = "data/"

16 x = fn(x, y)

17 print(x)
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Internationalisation

All common programming languages are designed for the English language, as can be seen from

the names of the built-in functions, e.g. print() or type().

Good Code should be ı̈n English”.
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Descriptive Names

Choosing variable names is a science in itself. In geneal short name e.g. x, y or a are a poor

choice. Good names are e.g. res1, xvalsor
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Exibit A

1 number_to_double = 1

2 val_to_compare_to = [21, 42]

3

4

5 def check_if_double(number_to_double, val_to_compare_to):

6 number_to_double = number_to_double * 2

7 if number_to_double == val_to_compare_to:

8 print("This is true")

9 return True

10 else:

11 print("This is false")

12 return False

13

14

15 data_path = "data/"

16 number_to_double = check_if_double(number_to_double, val_to_compare_to)

17 print(number_to_dubble)
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Structuring

Blank lines can aid readability. Explicit rules for those are not yet conceived.
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Exibit A

1 number_to_double = 1

2 val_to_compare_to = [21, 42]

3

4

5 def check_if_double(number_to_double, val_to_compare_to):

6

7 number_to_double = number_to_double * 2

8

9 if number_to_double == val_to_compare_to:

10 print("This is true")

11 return True

12

13 else:

14 print("This is false")

15 return False

16

17

18 data_path = "data/"

19

20 number_to_double = fn(number_to_double, val_to_compare_to)

21 print(number_to_dubble)
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Names

Avoid using the same variable names in different sections of your code!
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Names II

Variables outside a function should always have different names than the variables inside the

function.

In addition, a new value should also have a new name.
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Exibit A

1 num1 = 1

2 x_vals = [21, 42]

3

4

5 def check_if_double(number_to_double, val_to_compare_to):

6

7 number_to_dubble = number_to_double * 2

8

9 if number_to_double == val_to_compare_to:

10 print("This is true")

11 return True

12

13 else:

14 print("This is false")

15 return False

16

17

18 data_path = "data/"

19

20 res = check_if_double(num1, x_vals)

21 print(res)
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Structure

Imports, Functions and Constants belong at the top!
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Exibit A

1 DATA_PATH = "data/"

2

3

4 def check_if_double(number_to_double, val_to_compare_to):

5

6 number_to_dubble = number_to_double * 2

7

8 if number_to_double == val_to_compare_to:

9 print("This is true")

10 return True

11

12 else:

13 print("This is false")

14 return False

15

16

17 num1 = 1

18 x_vals = [21, 42]

19

20 res = check_if_double(num1, x_vals)

21 print(res)
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How to comment

Code must be commented! There are two types of Comments:

• The one-liner: # this is a comment

• The Docstring: ”This is a potential multi-line comment”

Comments are (mostly) written in the English imperative:

code = crazy_fn(True) ## call function, send message, recieve new code
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Spacing

Put a space between # and the actual comment.

If the comment is placed after the programme code, two spaces must be placed between the

code and #.
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Spacing
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Descriptiveness

The description of a function always includes:

• Why does this funtion exist/ What does this function do

• What are the necessary inputs? - do they require a specific type e.g. booleaan?

• Does the function return something? - If so, then what exactly?
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Exibit A

1 DATA_PATH = "data/" # path were data is expected and read from

2

3

4 def check_if_double(number_to_double, val_to_compare_to):

5 """

6 Take two params, double first one, compare both

7 return boolean if both are equal

8 """

9

10 # double value

11 number_to_dubble = number_to_double * 2 # multiply by two to double the value

12

13 # compare values - print if is equal, return

14 if number_to_double == val_to_compare_to:

15 print("This is true") # print that this is true to terminal

16 return True # return true if value was true

17

18 # this is what we if the if check fails

19 else:

20 print("This is false") # print in terminal that this is false

21 return False # return false

22

23

24 num1 = 1 # this value is one

25 x_vals = [21, 42] # values meassured in last experiment

26

27 # verifiy that first value is twice the second one

28 res = check_if_double(num1, x_vals) # call a function

29 print(res) # print result to terminal
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What comments?

Are there unnecessary comments? - Oh yes, loads actually.
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Meme
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Exibit A

1 DATA_PATH = "data/" # path were data is expected and read from

2

3

4 def check_if_double(number_to_double, val_to_compare_to):

5 """

6 Take two params, double first one, compare both

7 return boolean if both are equal

8 """

9

10 # double value

11 number_to_dubble = number_to_double * 2

12

13 # compare values - print if is equal, return

14 if number_to_double == val_to_compare_to:

15 print("This is true")

16 return True

17

18 else:

19 print("This is false")

20 return False

21

22

23 num1 = 1

24 x_vals = [21, 42] # values meassured in last experiment

25

26 # verifiy that first value is twice the second one

27 res = check_if_double(num1, x_vals)

28 print(res) # print result to terminal
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snake case

The current convention in python is that snake case is being used instead of camelCase.

In addition, variable and function names always begin with a lower case letter. Constants are

excluded (these are written in CAPS and snake case).

(Only classes are written in CamelCase and begin with a capital letter, but this is not relevant

here).
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Exibit A

DATA_PATH = "data/" # path were data is expected and read from

def WrongWrittenFunction(justForDemontration):

"""How did this get in here?! - Delete this! Now!!!"""

print("iAmYourJava")

def check_if_double(number_to_double, val_to_compare_to):

"""

Take two params, double first one, compare both

return boolean if both are equal

"""

# double value

number_to_dubble = number_to_double * 2

# compare values - print if is equal, return

if number_to_double == val_to_compare_to:

print("This is true")

return True

else:

print("This is false")

return False

num1 = 1

x_vals = [21, 42] # values meassured in last experiment

# verifiy that first value is twice the second one

res = check_if_double(num1, x_vals)

print(res) # print result to terminal
25



Line Length

Take a break and breathe deeply.

By convention, a line of code should contain no more than 160 characters.

If you need more, you should either urgently break up the code a little further and store more

intermediate values or look at how line breaks work.

If in doubt, the former will be the solution :)

Yes, it’s very tempting to squeeze everything into one line to look cool. But it’s cooler if you

write your code in a way that is easy for you and others to understand.
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Exibit B

# bad practice

x = print(str(3.141592653 + 42 + int(input("Gib eine Zahl ein "))))
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Exibit B

linenos# better practice

in_val = int(input("Gib eine Zahl ein "))

res = 3.141592653 + 42 + in_val

x = print(str(res))

# okayto cast res into a String since its not useful here, but it's about principle :)
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Exibit C

array = [1 if i % 2 != 0 else 0 for i in range(10)] # create a list with alternating ones and zeroes

print(array)
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Slicing

# slicing - briefly: no spaces as long as no functions / calculations are included

string = "that's good code you're writing there :D"

string[1:4]

string[1 + 4 : 8]

string[: len(string) - 2 : -1]

string[::-1]
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Parameters

linenos# If the list of parameters is too long, you can divide it into several lines.

def crazy_long_fn(first_val,

second_val,

third_val,

fourth_val):

print("Hello there :)")
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Parameters II

# same for function calls

x = crazy_long_fn(52, 48,

21, 42)
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Imports

# Order von imports

# built in (standard library)

import math

# externally loaded libraries (z.B. über pip geladen)

import numpy

from matplotlib import pyplot as plt

# files / modules you have written by yourself

import my_math

# NEVER do: from x import *
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Kwargs

# Keyword arguments are great!

# kwargs can help to better document the code and show what kind of value is expected by default.

# but they are not a panacea!

# Parameters that are REQUIRED, otherwise the function makes no sense, should not be given a default value

def my_keyword_fn(first_in, second_in, overwrite=True, iterations=42):

print("This function does nothing so far... but it's signature looks cool :D")
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TL:DR

TL:DR: Be nice to your Tutors and Group Mates

and write clean and pretty Code :-)
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End

Thank you for participating
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End

Thank you for participating
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Contact details

Contact details:

• Mail: wallau@uni-bonn.de

• Discord: A91202#0931
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