
Physics 725- Scientific Programming with Python

Good Coding Style

Alexander Wallau & Christoph Geron

24. Mai 2023

Universität Bonn

Inhaltsverzeichnis

Good Coding Style

General formating

Comments

Miscellaneous

1

Good Coding Style

PEP8

PEP8

2

PEP8

Python Enhancement Proposals

PEP 8 - Style Guide for Python code

3

PEP8

Python Enhancement Proposals

PEP 8 - Style Guide for Python code

3

PEP8

A concern of the tutors from the computer science department for the benefit of all involved.

4

Exibit A

1 # Bad code we want to improve:

2 x=1

3 y=[21,42]

4 def fn(x,y):

5 x=x*2

6 if x==y:

7 print("This is correct")

8 return True

9 else:

10 print("This is false")

11 return False

12 z="data/"

13 x=fn(x,y)

14 print(x)

5

Blank lines

1 x = 1

2 y = [21, 42]

3

4

5 def fn(x, y):

6 x = x * 2

7 if x == y:

8 print("This is correct")

9 return True

10 else:

11 print("This is false")

12 return False

13

14

15 z = "data/"

16 x = fn(x, y)

17 print(x)

6

Internationalisation

All common programming languages are designed for the English language, as can be seen from

the names of the built-in functions, e.g. print() or type().

Good Code should be ı̈n English”.

7

Descriptive Names

Choosing variable names is a science in itself. In geneal short name e.g. x, y or a are a poor

choice. Good names are e.g. res1, xvalsor

8

Exibit A

1 number_to_double = 1

2 val_to_compare_to = [21, 42]

3

4

5 def check_if_double(number_to_double, val_to_compare_to):

6 number_to_double = number_to_double * 2

7 if number_to_double == val_to_compare_to:

8 print("This is true")

9 return True

10 else:

11 print("This is false")

12 return False

13

14

15 data_path = "data/"

16 number_to_double = check_if_double(number_to_double, val_to_compare_to)

17 print(number_to_dubble)

9

Structuring

Blank lines can aid readability. Explicit rules for those are not yet conceived.

10

Exibit A

1 number_to_double = 1

2 val_to_compare_to = [21, 42]

3

4

5 def check_if_double(number_to_double, val_to_compare_to):

6

7 number_to_double = number_to_double * 2

8

9 if number_to_double == val_to_compare_to:

10 print("This is true")

11 return True

12

13 else:

14 print("This is false")

15 return False

16

17

18 data_path = "data/"

19

20 number_to_double = fn(number_to_double, val_to_compare_to)

21 print(number_to_dubble)

11

Names

Avoid using the same variable names in different sections of your code!

12

Names II

Variables outside a function should always have different names than the variables inside the

function.

In addition, a new value should also have a new name.

13

Exibit A

1 num1 = 1

2 x_vals = [21, 42]

3

4

5 def check_if_double(number_to_double, val_to_compare_to):

6

7 number_to_dubble = number_to_double * 2

8

9 if number_to_double == val_to_compare_to:

10 print("This is true")

11 return True

12

13 else:

14 print("This is false")

15 return False

16

17

18 data_path = "data/"

19

20 res = check_if_double(num1, x_vals)

21 print(res)

14

Structure

Imports, Functions and Constants belong at the top!

15

Exibit A

1 DATA_PATH = "data/"

2

3

4 def check_if_double(number_to_double, val_to_compare_to):

5

6 number_to_dubble = number_to_double * 2

7

8 if number_to_double == val_to_compare_to:

9 print("This is true")

10 return True

11

12 else:

13 print("This is false")

14 return False

15

16

17 num1 = 1

18 x_vals = [21, 42]

19

20 res = check_if_double(num1, x_vals)

21 print(res)

16

How to comment

Code must be commented! There are two types of Comments:

• The one-liner: # this is a comment

• The Docstring: ”This is a potential multi-line comment”

Comments are (mostly) written in the English imperative:

code = crazy_fn(True) ## call function, send message, recieve new code

17

How to comment

Code must be commented! There are two types of Comments:

• The one-liner: # this is a comment

• The Docstring: ”This is a potential multi-line comment”

Comments are (mostly) written in the English imperative:

code = crazy_fn(True) ## call function, send message, recieve new code

17

How to comment

Code must be commented! There are two types of Comments:

• The one-liner: # this is a comment

• The Docstring: ”This is a potential multi-line comment”

Comments are (mostly) written in the English imperative:

code = crazy_fn(True) ## call function, send message, recieve new code

17

Spacing

Put a space between # and the actual comment.

If the comment is placed after the programme code, two spaces must be placed between the

code and #.

18

Spacing

Put a space between # and the actual comment.

If the comment is placed after the programme code, two spaces must be placed between the

code and #.

18

Descriptiveness

The description of a function always includes:

• Why does this funtion exist/ What does this function do

• What are the necessary inputs? - do they require a specific type e.g. booleaan?

• Does the function return something? - If so, then what exactly?

19

Descriptiveness

The description of a function always includes:

• Why does this funtion exist/ What does this function do

• What are the necessary inputs? - do they require a specific type e.g. booleaan?

• Does the function return something? - If so, then what exactly?

19

Descriptiveness

The description of a function always includes:

• Why does this funtion exist/ What does this function do

• What are the necessary inputs? - do they require a specific type e.g. booleaan?

• Does the function return something? - If so, then what exactly?

19

Exibit A

1 DATA_PATH = "data/" # path were data is expected and read from

2

3

4 def check_if_double(number_to_double, val_to_compare_to):

5 """

6 Take two params, double first one, compare both

7 return boolean if both are equal

8 """

9

10 # double value

11 number_to_dubble = number_to_double * 2 # multiply by two to double the value

12

13 # compare values - print if is equal, return

14 if number_to_double == val_to_compare_to:

15 print("This is true") # print that this is true to terminal

16 return True # return true if value was true

17

18 # this is what we if the if check fails

19 else:

20 print("This is false") # print in terminal that this is false

21 return False # return false

22

23

24 num1 = 1 # this value is one

25 x_vals = [21, 42] # values meassured in last experiment

26

27 # verifiy that first value is twice the second one

28 res = check_if_double(num1, x_vals) # call a function

29 print(res) # print result to terminal

20

What comments?

Are there unnecessary comments? - Oh yes, loads actually.

21

Meme

22

Exibit A

1 DATA_PATH = "data/" # path were data is expected and read from

2

3

4 def check_if_double(number_to_double, val_to_compare_to):

5 """

6 Take two params, double first one, compare both

7 return boolean if both are equal

8 """

9

10 # double value

11 number_to_dubble = number_to_double * 2

12

13 # compare values - print if is equal, return

14 if number_to_double == val_to_compare_to:

15 print("This is true")

16 return True

17

18 else:

19 print("This is false")

20 return False

21

22

23 num1 = 1

24 x_vals = [21, 42] # values meassured in last experiment

25

26 # verifiy that first value is twice the second one

27 res = check_if_double(num1, x_vals)

28 print(res) # print result to terminal

23

snake case

The current convention in python is that snake case is being used instead of camelCase.

In addition, variable and function names always begin with a lower case letter. Constants are

excluded (these are written in CAPS and snake case).

(Only classes are written in CamelCase and begin with a capital letter, but this is not relevant

here).

24

snake case

The current convention in python is that snake case is being used instead of camelCase.

In addition, variable and function names always begin with a lower case letter. Constants are

excluded (these are written in CAPS and snake case).

(Only classes are written in CamelCase and begin with a capital letter, but this is not relevant

here).

24

snake case

The current convention in python is that snake case is being used instead of camelCase.

In addition, variable and function names always begin with a lower case letter. Constants are

excluded (these are written in CAPS and snake case).

(Only classes are written in CamelCase and begin with a capital letter, but this is not relevant

here).

24

Exibit A

DATA_PATH = "data/" # path were data is expected and read from

def WrongWrittenFunction(justForDemontration):

"""How did this get in here?! - Delete this! Now!!!"""

print("iAmYourJava")

def check_if_double(number_to_double, val_to_compare_to):

"""

Take two params, double first one, compare both

return boolean if both are equal

"""

double value

number_to_dubble = number_to_double * 2

compare values - print if is equal, return

if number_to_double == val_to_compare_to:

print("This is true")

return True

else:

print("This is false")

return False

num1 = 1

x_vals = [21, 42] # values meassured in last experiment

verifiy that first value is twice the second one

res = check_if_double(num1, x_vals)

print(res) # print result to terminal
25

Line Length

Take a break and breathe deeply.

By convention, a line of code should contain no more than 160 characters.

If you need more, you should either urgently break up the code a little further and store more

intermediate values or look at how line breaks work.

If in doubt, the former will be the solution :)

Yes, it’s very tempting to squeeze everything into one line to look cool. But it’s cooler if you

write your code in a way that is easy for you and others to understand.

26

Line Length

Take a break and breathe deeply.

By convention, a line of code should contain no more than 160 characters.

If you need more, you should either urgently break up the code a little further and store more

intermediate values or look at how line breaks work.

If in doubt, the former will be the solution :)

Yes, it’s very tempting to squeeze everything into one line to look cool. But it’s cooler if you

write your code in a way that is easy for you and others to understand.

26

Line Length

Take a break and breathe deeply.

By convention, a line of code should contain no more than 160 characters.

If you need more, you should either urgently break up the code a little further and store more

intermediate values or look at how line breaks work.

If in doubt, the former will be the solution :)

Yes, it’s very tempting to squeeze everything into one line to look cool. But it’s cooler if you

write your code in a way that is easy for you and others to understand.

26

Line Length

Take a break and breathe deeply.

By convention, a line of code should contain no more than 160 characters.

If you need more, you should either urgently break up the code a little further and store more

intermediate values or look at how line breaks work.

If in doubt, the former will be the solution :)

Yes, it’s very tempting to squeeze everything into one line to look cool. But it’s cooler if you

write your code in a way that is easy for you and others to understand.

26

Exibit B

bad practice

x = print(str(3.141592653 + 42 + int(input("Gib eine Zahl ein "))))

27

Exibit B

linenos# better practice

in_val = int(input("Gib eine Zahl ein "))

res = 3.141592653 + 42 + in_val

x = print(str(res))

okayto cast res into a String since its not useful here, but it's about principle :)

28

Exibit C

array = [1 if i % 2 != 0 else 0 for i in range(10)] # create a list with alternating ones and zeroes

print(array)

29

Slicing

slicing - briefly: no spaces as long as no functions / calculations are included

string = "that's good code you're writing there :D"

string[1:4]

string[1 + 4 : 8]

string[: len(string) - 2 : -1]

string[::-1]

30

Parameters

linenos# If the list of parameters is too long, you can divide it into several lines.

def crazy_long_fn(first_val,

second_val,

third_val,

fourth_val):

print("Hello there :)")

31

Parameters II

same for function calls

x = crazy_long_fn(52, 48,

21, 42)

32

Imports

Order von imports

built in (standard library)

import math

externally loaded libraries (z.B. über pip geladen)

import numpy

from matplotlib import pyplot as plt

files / modules you have written by yourself

import my_math

NEVER do: from x import *

33

Kwargs

Keyword arguments are great!

kwargs can help to better document the code and show what kind of value is expected by default.

but they are not a panacea!

Parameters that are REQUIRED, otherwise the function makes no sense, should not be given a default value

def my_keyword_fn(first_in, second_in, overwrite=True, iterations=42):

print("This function does nothing so far... but it's signature looks cool :D")

34

TL:DR

TL:DR: Be nice to your Tutors and Group Mates

and write clean and pretty Code :-)

35

End

Thank you for participating

36

End

Thank you for participating

36

Contact details

Contact details:

• Mail: wallau@uni-bonn.de

• Discord: A91202#0931

37

mailto:wallau@uni-bonn.de

	Good Coding Style
	General formating
	Comments
	Miscellaneous

