Physics 725- Scientific Programming with Python

Good Coding Style

Alexander Wallau & Christoph Geron
24. Mai 2023

Universitat Bonn

Inhaltsverzeichnis

Good Coding Style
General formating
Comments

Miscellaneous

Good Coding Style

PEP8

PEPS

PEP8

Python Enhancement Proposals

PEP8

Python Enhancement Proposals
PEP 8 - Style Guide for Python code

PEP8

A concern of the tutors from the computer science department for the benefit of all involved.

Exibit A

0w N O U A W N

©

11
12
13
14

Bad code we want to improve:
x=1
y=[21,42]
def fn(x,y):
X=X*2
if x==y:
print("This is correct")
return True
else:
print("This is false")
return False
z="data/"
x=fn(x,y)
print(x)

Blank lines

1 x =1

2 y = [21, 42]

3

4

5 def fn(x, y):

6 X =X % 2

7 if x == y:

8 print ("This is correct")
9 return True

10 else:

11 print("This is false")
12 return False

13

14

15 z = "data/"

16 x = fn(x, y)
17 print(x)

Internationalisation

All common programming languages are designed for the English language, as can be seen from
the names of the built-in functions, e.g. print() or type().
Good Code should be in English”.

Descriptive Names

Choosing variable names is a science in itself. In geneal short name e.g. x, y or a are a poor
choice. Good names are e.g. resl, x,alsor

Exibit A

[S SR I

©o N o

number_to_double = 1
val_to_compare_to = [21, 42]

def check_if_double (number_to_double, val_to_compare_to):
number_to_double = number_to_double * 2
if number_to_double == val_to_compare_to:
print("This is true")
return True
else:
print("This is false")
return False

data_path = "data/"
number_to_double = check_if_double (number_to_double, val_to_compare_to)
print (number_to_dubble)

Structuring

Blank lines can aid readability. Explicit rules for those are not yet conceived.

10

Exibit A

0w N o oA W N

©

11
12
13
14
15
16
17
18
19
20
21

number_to_double = 1
val_to_compare_to = [21, 42]
def check_if_double (number_to_double, val_to_compare_to):
number_to_double = number_to_double * 2
if number_to_double == val_to_compare_to:
print("This is true")
return True
else:
print("This is false")
return False

data_path = "data/"

number_to_double = fn(number_to_double, val_to_compare_to)
print (number_to_dubble)

11

Avoid using the same variable names in different sections of your code!

12

Variables outside a function should always have different names than the variables inside the
function.
In addition, a new value should also have a new name.

13

Exibit A

0w N o oA W N

©

11
12
13
14
15
16
17
18
19
20
21

numl = 1
x_vals = [21, 42]
def check_if_double (number_to_double, val_to_compare_to):
number_to_dubble = number_to_double * 2
if number_to_double == val_to_compare_to:
print("This is true")
return True
else:
print("This is false")
return False

data_path = "data/"

res = check_if_double(numl, x_vals)
print(res)

14

Imports, Functions and Constants belong at the top!

15

Exibit A

0w N o oA W N

©

11
12
13
14
15
16
17
18
19
20
21

DATA_PATH = "data/"

def check_if_double(number_to_double, val_to_compare_to):
number_to_dubble = number_to_double * 2

if number_to_double == val_to_compare_to:
print("This is true")
return True

else:
print("This is false")
return False

numl = 1
x_vals = [21, 42]

res = check_if_double(numl, x_vals)
print(res)

16

How to comment

Code must be commented! There are two types of Comments:

e The one-liner: # this is a comment

17

How to comment

Code must be commented! There are two types of Comments:

e The one-liner: # this is a comment

e The Docstring: " This is a potential multi-line comment”

17

How to comment

Code must be commented! There are two types of Comments:

e The one-liner: # this is a comment

e The Docstring: " This is a potential multi-line comment”
Comments are (mostly) written in the English imperative:

code = crazy_fn(True) ## call function, send message, recieve new code

17

Put a space between # and the actual comment.

18

Put a space between # and the actual comment.
If the comment is placed after the programme code, two spaces must be placed between the
code and #.

18

Descriptiveness

The description of a function always includes:

e Why does this funtion exist/ What does this function do

19

Descriptiveness

The description of a function always includes:

e Why does this funtion exist/ What does this function do

e What are the necessary inputs? - do they require a specific type e.g. booleaan?

19

Descriptiveness

The description of a function always includes:

e Why does this funtion exist/ What does this function do
e What are the necessary inputs? - do they require a specific type e.g. booleaan?

e Does the function return something? - If so, then what exactly?

19

Exibit A

1 DATA_PATH = "data/" # path were data is ezpected and read from

2

3

4 def check_if_double(number_to_double, val_to_compare_to):

6 Take two params, double first one, compare both

7 return boolean if both are equal

8

9

10 # double value

11 number_to_dubble = number_to_double * 2 # multiply by two to double the value
12

13 # compare values - print if is equal, return

14 if number_to_double == val_to_compare_to:

15 print("This is true") # print that this is true to terminal
16 return True # return true if value was true

17

18 # this is what we if the if check fails

19 else:

20 print("This is false") # print in terminal that this is false
21 return False # return false

22

23

24 numl = 1 # this value is one

25 x_vals = [21, 42] # values meassured in last ezperiment

26

27 # verifiy that first value is twice the second onme

28 res = check_if_double(numl, x_vals) # call a function

29 print(res) # print result to terminal

20

What comments?

Are there unnecessary comments? - Oh yes, loads actually.

21

M Nick Moore 1dayago

CODE COMMENTS
BE LIKE

22

Exibit A

1 DATA_PATH = "data/" # path were data is expected and read from
2

3

4 def check_if_double(number_to_double, val_to_compare_to):
5

6 Take two params, double first one, compare both

7 return boolean if both are equal

9

10 # double value

11 number_to_dubble = number_to_double * 2

12

13 # compare values - print if is equal, return

14 if number_to_double val_to_compare_to:

15 print("This is true")

16 return True

17

18 else:

19 print("This is false")
20 return False
21
22
23 numl = 1
24 x_vals = [21, 42] # values meassured in last experiment
25
26 # verifiy that first value is twice the second one
27 res = check_if_double(numl, x_vals)
28 print(res) # print result to terminal

23

snake_case

The current convention in python is that snake_case is being used instead of camelCase.

24

snake_case

The current convention in python is that snake_case is being used instead of camelCase.
In addition, variable and function names always begin with a lower case letter. Constants are
excluded (these are written in CAPS and snake_case).

24

snake_case

The current convention in python is that snake_case is being used instead of camelCase.
In addition, variable and function names always begin with a lower case letter. Constants are
excluded (these are written in CAPS and snake_case).

(Only classes are written in CamelCase and begin with a capital letter, but this is not relevant
here).

24

Exibit A

DATA_PATH = "data/" # path were data is ezpected and read from

def WrongWrittenFunction(justForDemontration):
"""How did this get in here?! - Delete this! Now!!!"""

print("iAmYourJava")

def check_if_double(number_to_double, val_to_compare_to):
Take two params, double first one, compare both

return boolean if both are equal

double wvalue
number_to_dubble = number_to_double * 2

compare values - print if is equal, return
if number_to_double == val_to_compare_to:
print("This is true")
return True

else:
print("This is false")
return False

numl = 1
x_vals = [21, 42] # values meassured in last ezperiment

verifiy that first value is twice the second onme
res = check_if_double(numl, x_vals)
print(res) # print result to terminal

25

Line Length

Take a break and breathe deeply.

26

Line Length

Take a break and breathe deeply.
By convention, a line of code should contain no more than 160 characters.

26

Line Length

Take a break and breathe deeply.
By convention, a line of code should contain no more than 160 characters.

If you need more, you should either urgently break up the code a little further and store more
intermediate values or look at how line breaks work.

26

Line Length

Take a break and breathe deeply.

By convention, a line of code should contain no more than 160 characters.

If you need more, you should either urgently break up the code a little further and store more
intermediate values or look at how line breaks work.

If in doubt, the former will be the solution :)

Yes, it's very tempting to squeeze everything into one line to look cool. But it's cooler if you
write your code in a way that is easy for you and others to understand.

26

Exibit B

bad practice
x = print(str(3.141592653 + 42 + int(input("Gib eine Zahl ein "))))

27

Exibit B

linenos# better practice

in_val = int(input("Gib eine Zahl ein "))
res = 3.141592653 + 42 + in_val

x = print(str(res))

okayto cast res into a String since its not useful here, but it's about principle :)

28

Exibit C

array = [1 if i), 2 != 0 else O for i in range(10)] # create a list with alternating ones and zeroes
print (array)

29

Slicing

slicing - briefly: no spaces as long as no functions / calculations are included
string = "that's good code you're writing there :D"

string[1:4]

string[1 + 4 : 8]

string[: len(string) - 2 : -1]

string[::-1]

30

Parameters

linenos# If the list of parameters is too long, you can divide it into several lines.
def crazy_long_fn(first_val,

second_val,

third_val,

fourth_val):

print("Hello there :)")

31

Parameters ||

same for function calls
x = crazy_long_fn(52, 48,
21, 42)

32

Imports

Order von imports
built in (standard library)
import math

externally loaded libraries (z.B. uber pip geladen)
import numpy

from matplotlib import pyplot as plt

files / modules you have written by yourself
import my_math

NEVER do: from x import *

33

Keyword arguments are great!

kwargs can help to better document the code and show what kind of value ts expected by default.
but they are not a panacea!

Parameters that are REQUIRED, otherwise the function makes mo sense, should not be given a default value
def my_keyword_fn(first_in, second_in, overwrite=True, iterations=42):
print("This function does nothing so far... but it's signature looks cool :D")

34

TL:DR

TL:DR: Be nice to your Tutors and Group Mates
and write clean and pretty Code :-)

35

Thank you for participating

36

Thank you for participating

36

Contact details

Contact details:

e Mail: wallau@uni-bonn.de

e Discord: A91202+#0931

37

mailto:wallau@uni-bonn.de

	Good Coding Style
	General formating
	Comments
	Miscellaneous

